Instability results for the damped wave equation in unbounded domains
نویسنده
چکیده
We extend some previous results for the damped wave equation in bounded domains in R to the unbounded case. In particular, we show that if the damping term is of the form αa with bounded a taking on negative values on a set of positive measure, then there will always exist unbounded solutions for sufficiently large positive α. In order to prove these results, we generalize some existing results on the asymptotic behaviour of eigencurves of one-parameter families of Schrödinger operators to the unbounded case, which we believe to be of interest in their own right. On leave from Department of Theoretical Physics, Nuclear Physics Institute, Academy of Sciences, 250 68 Řež near Prague, Czech Republic.
منابع مشابه
Random Attractor for Non-autonomous Stochastic Strongly Damped Wave Equation on Unbounded Domains∗
In this paper we study the asymptotic dynamics for the nonautonomous stochastic strongly damped wave equation driven by additive noise defined on unbounded domains. First we introduce a continuous cocycle for the equation and then investigate the existence and uniqueness of tempered random attractors which pullback attract all tempered random sets.
متن کاملAsymptotic Behavior of Stochastic Strongly Wave Equation on Unbounded Domains
We study the asymptotic behavior of solutions to the stochastic strongly damped wave equation with additive noise defined on unbounded domains. We first prove the uniform estimates of solutions, and then establish the existence of a random attractor.
متن کاملPullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملFinding the Optimal Place of Sensors for a 3-D Damped Wave Equation by using Measure Approach
In this paper, we model and solve the problem of optimal shaping and placing to put sensors for a 3-D wave equation with constant damping in a bounded open connected subset of 3-dimensional space. The place of sensor is modeled by a subdomain of this region of a given measure. By using an approach based on the embedding process, first, the system is formulated in variational form;...
متن کاملExact Controllability of a Non-linear Generalized Damped Wave Equation: Application to the Sine-gordon Equation
In this paper, we give a sufficient conditions for the exact controllability of the non-linear generalized damped wave equation ẅ + ηẇ + γAw = u(t) + f(t, w, u(t)), on a Hilbert space. The distributed control u ∈ L2 and the operator A is positive definite self-adjoint unbounded with compact resolvent. The nonlinear term f is a continuous function on t and globally Lipschitz in the other variabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004